

17-4PH 1.4542

Werkstoffdatenblatt

Maschine

EOS M290

Verwendungsgebiet

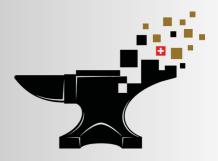
- Allgemeiner Maschinenbau
- & hochbelastete Teile
- Chemie-Industrie
- Lebensmittelbereich
- Medizinaltechnik

Typische Eigenschaften

- Hohe Festigkeit
- Hohe Korrosionsbeständigkeit
- Ferromagnetisch

Die Legierung

Der Edelstahl 17-4PH weisst ein hohes Mass an Korrosionsbeständigkeit in Kombination mit hoher Festigkeit auf. Diese Kombination ist ideal für medizinische Anwendungen, wie sie zum Beispiel in chirurgischen Instrumenten benötigt werden. Die Legierung benötigt eine entsprechende Wärmebehandlung, um die vollen mechanischen Eigenschaften zu erreichen.


Unsere Fertigung & Qualität

Durch die Kombination von Pulver, Parameter und dem vordefinierten Schutzgas, wird das Bauteil im

- zertifizierten und regulierten Rahmen hergestellt. Die Bauteile werden entsprechend mit einem Materialzeugnis 3.1 gefertigt
- Wir verwenden ausschliesslich Pulver unseres Maschinenlieferanten EOS GmbH.
- Zusätzliche Prüfbestimmungen können flexibel in den Produktionsprozess eingebracht werden

Contact Us

Unlimital AG info@Unlimital.ch +41 41 510 55 39 Artherstrasse 60 6405 Immensee

EOS StainlessSteel 17-4PH

EOS StainlessSteel 17-4PH is a stainless steel powder intended for manufacturing parts on EOS metal systems with EOS DMLS processes.

This document provides information and data for parts built using EOS StainlessSteel 17-4PH powder EOS art.-no. 9011-0041 on the following system specifications:

DMLS® System: EOS M 290

- → Ceramic blade (2200-3013)
- → Grid nozzle (2200-5501)
- → IPCM M extra Sieving Module with 75µm mesh size (200000315) recommended

Manual sieve with 75µm mesh size (200000321) recommended; standard manual sieve with 80µm mesh possible

→ Argon atmosphere

Software: EOSYSTEM 2.5 or newer / EOSPRINT 1.5 or newer EOS Parameter Set: 17-4PH 40µm Stainless

→ (Default Job: 17-4PH_040_StainlessM291_100)

Description

Precipitation hardening steels are widely used in engineering applications, which require corrosion resistance and strength. Parts built from EOS StainlessSteel 17-4PH can be machined, shot-peened and polished in as-built or heat treated states. Solution annealing together with ageing treatment are necessary in order to achieve proper hardness and mechanical properties (ASTM A564 – 13). Due to the layerwise building method, the parts have a certain anisotropy which can be eased by solution annealing.

Quality Assurance of EOS StainlessSteel 17-4PH powder material

The quality of the delivered EOS StainlessSteel 17-4PH powder lots is ensured by the Quality Assurance procedures which are part of EOS Quality Management System. The procedures include quality assurance of both the powder and process.

Quality assurance of the powder product includes:

- → sampling (ASTM B215)
- → sieving (ASTM B214)
- → particle size analysis (ASTM B822)
- → chemistry analyses (ASTM E2823/E1479/E1019)
- → apparent density (ASTM B212/B329/B417)

Heat treatment

Vacuum H900 heat treatment procedure:

- → Solution annealing: Hold at 1040°C (1904°F) ±15°C (± 59°F) for 30 minutes, air cooling under 32°C (89°F).
- → Ageing: Hold at 480°C (896°F) for one hour, air cooling under 32°C (89°F).

Atmospheric HT procedure (preferred atmosphere: Argon):

- → Solution annealing: Hold at 1040°C (1904°F) +15°C (+ 59°F) for 30 minutes, air cooling under 32°C (89°F).
- → Ageing: Hold at 460°C (860°F) for one hour, air cooling under 32°C (89°F).

The quality of the process is assured with each delivered powder lots by building a quality assurance job with a qualified EOS M 290 system.

Process quality is assured by:

- → tensile tests (ISO6892, ASTM E8M)
- → density measurement (ISO3369)
- → hardness measurement (ISO 6508)
- → chemistry analysis of the solid part (ASTM 2823/E1479/E1019).

The results of the quality assurance tests are given in the lot specific Mill Test Certificates (MTC) according to EN-10204 type 3.1.

Technical Data

Powder properties

The chemical composition of the powder is in compliance with standards "F899 - 12b Standard Specification for Wrought Stainless Steels for Surgical Instruments" and "A564M - 13 Standard Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes".

Material composition	Acc. to standard		
Element	Min.	Max.	
Cr	15.00	17.50	
Ni	3.00	5.00	
Cu	3.00	5.00	
Si	-	1.00	
Mn	-	1.00	
С	-	0.07	
P	-	0.040	
S	-	0.030	
Nb + Ta	0.15	0.45	
Particle size			
D50 ^[1]		36-44 μm approx. 1.4-1.7 · 10-3 inch	
Particles >53μm ^[2]	Max 6.0 v	Max 6.0 wt%	
Particles >63µm [2]	Max 1.0 v	Max 1.0 wt%	
Powder density			
Apparent density ^[3]		Mean 3.83 g/cm³ Mean 13.84 lbs/in³	
Tap density [4]	Mean 4.7	g/cm³	

^[1] According to ASTM B822 [2] According to ASTM B214.

Tap density [4]

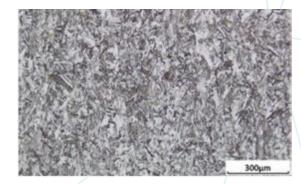
General process data

Layer thickness	40 μm 1.6 · 10–3 inch
Volume rate [5]	3.32 mm³/s (11.95 cm³/h) 0.73 in³/h

Mean 1.7 lbs/in³

[5] The volume rate is a measure of build speed during laser exposure of the skin area. The total build speed depends on this volume rate and many other factors such as exposure parameters of contours supports, up and downskin, recoating time, Home-In or LPM settings.

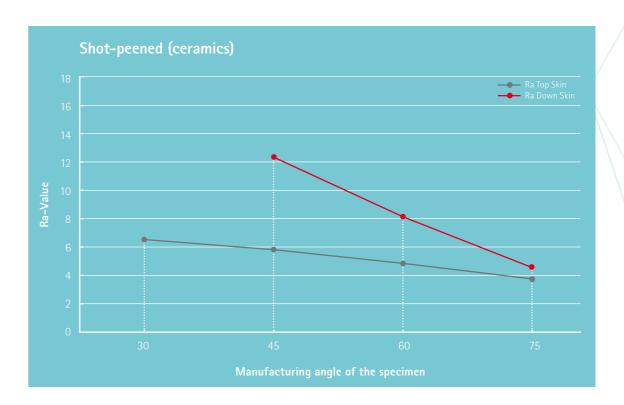
^[3] According to ASTM B212, ASTM B329 & ASTM B417. [4] According to ASTM B527.


Physical and chemical properties of parts¹

The chemical composition of parts is in compliance with standards "F899 – 12b Standard Specification for Wrought Stainless Steels for Surgical Instruments" and "A564M – 13 Standard Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes". Composition complies the material composition in "powder properties" section. Part accuracy is adjustable by changing the "Beam Offset, X-, Y- and Z-Shrinkage"-parameters.

Part density [6]	Mean 7.79 g/cm³ Mean 28.14 lbs/in³
Part accuracy [7]	
Small parts	approx. \pm 50 μ m approx. \pm 1.1 \cdot 10–3 inch
Min. wall thickness ^[8]	approx. 0.4 mm approx. 0.016 inch
Typical shrinkage after HT (for parts 50mm)	0.2%

Thermal expansion after	r atmospheric HT ^[9]	
25 – 100°C	10.4 10 ⁻⁶ /K	
25 - 200°C	11.0 10 ⁻⁶ /K	
25 - 300°C	11.4 10 ⁻⁶ /K	
25 - 400°C	11.8 10 ⁻⁶ /K	
25 - 500°C	12.0 10 ⁻⁶ /K	


Microstructure of heat treated parts	
Average porosity [10]	0.030%
Average pore size [10]	7.2 μm
N (number of samples)	70

Atmospheric furnace (Atmospheric HT) was used to heat treat etched part. Etchant: Marble's reagent.

10 X magnification

Surface roughness after shot-peening (approx.) [11]			
Horizontal	Ra 3.5 – 5.9 μm; Rz 17.3 – 27.7 μm Ra 0.12 – 0.20 · 10-3 inch; Rz 0.67 – 1.06 · 10-3 inch		
Vertical	Ra 3.4 – 5.5 μm; Rz 15.9 – 28.5 μm Ra 0.12 – 0,20 · 10-3 inch; Rz 0.59 – 1.12 · 10-3 inch		
Angled surfaces	Surface roughness measured in a function of manufacturing angle		

^[6] Weighing in air and water according to ISO 3369. ^[7] Based on users' experience of dimensional accuracy for typical geometries, e.g. ± 50 μm when parameters can be optimized for a certain class of parts or ± 70 μm when building a new kind of geometry for the first time. Part accuracy is subject to appropriate data preparation and postprocessing. ^[8] Mechanical stability is dependent on geometry (wall height etc.) and application. ^[9] According ASTM E228. ^[10] Porosities were measured from 15x15mm cross cuts using optical microscope according to internal procedure. Average porosity and pore size value depends on the job load. ^[11] Measurement according to ISO 4287. The numbers were measured at the horizontal (up-facing) and vertical surfaces of test cubes. Due to the layerwise building the roughness strongly depends on the orientation of the surface, for example sloping and curved surfaces exhibit a stair-step effect. Angles under 45° should be supported.

Statistical analysis of part properties¹

Process and powder validation was performed using several powder lots and EOS M 290 systems. Number of samples used in process and powder validation are shown in tables below. All heat treated mechanical properties showed over 3 sigma performance against ASTM A564M H900 requirement. Vacuum H900 validation data includes two EOS M 290 systems and four powder lots. Atmospheric HT validation data includes one EOS M 290 system and two powder lots.

	As built	Vacuum H900	Atmospheric HT	ASTM A564 (H900)
Ultimate tensile strength, Rm		4 Sigma		
In horizontal direction (XY)	Mean 886.0 MPa	Mean 1335.8 MPa	Mean 1340.0 MPa	min. 1310 MPa
StDev. 70.4 MPa StDev. 5.2 MPa StDev. 5.9 MPa	StDev. 5.9 MPa	111111. 1510 WII u		
N (number of samples)	72	144	36	
In vertical direction (Z)	Mean 924.2 MPa	Mean 1342.6 MPa	Mean 1345.5 MPa	min. 1310 MPa
in vertical direction (Z)	StDev. 65.9 MPa	StDev. 7.7 MPa	StDev. 2.8 MPa	
N (number of samples)	84	168	42	
		\wedge		
Yield strength, Rp 0.2		6 Sigma		
In horizontal direction (XY) Mean 860.6 MPa Mean 1235.2 MPa Mean 1235.5 MP StDev. 75.7 MPa StDev. 9.8 MPa StDev. 8.7 MPa	Mean 1235.5 MPa			
	StDev. 8.7 MPa			
N (number of samples)	72	144	36	
(3)	Mean 861.3 MPa	Mean 1250.7 MPa	Mean 1242.6 MPa	min. 1170 MPa
In vertical direction (Z)	StDev. 44.7 MPa	StDev. 13.5 MPa	StDev. 10.1 MPa	0.1 MPa
N (number of samples)	84	168	41	
		\triangle		
Elongation at break A		Almost 4 Sigma		
In horizontal direction (XY)	Mean 19.9%	Mean 14.0%	Mean 13.5%	min. 10%
	StDev. 1.2%	StDev. 0.8%	StDev. 0.9%	
N (number of samples)	72	144	36	
In vertical direction (Z)	Mean 20.1%	Mean 13.5%	Mean 12.6%	min. 10%
	StDev. 1.5%	StDev. 0.7%	StDev. 0.9%	
N (number of samples)	84		42	
		\triangle		
Hardness HRC		Almost 4 Sigma		
IHardness ^[13]	Mean 23.9 HRC	Mean 42.1 HRC	Mean 42.1 HRC	min. 40 HRC
	StDev. 3.6 HRC	StDev. 0.5 HRC	StDev. 0.5 HRC	
N (number of samples)	20	40	10	

^[12] Tensile testing according to ISO 6892 & ASTM E8M. [13] Rockwell Hardness, HRC, according to ISO 6508.

Additional information¹

Modified Heat treatment

Modified heat treatment may improve properties further. Lower aging temperature 460°C (860°F) has proven to be more suitable for DMLS® manufactured 17-4PH. Tensile data with vacuum furnace – Solution anneal as [14] following by ageing in 460°C.

	Vacuum 460°C [14]
Ultimate tensile strength, Rm	
Both directions	Mean 1358.1 MPa
	StDev. 6.7 MPa
N (number of samples)	39
Yield strength, Rp0.2	
Both directions	Mean 1262.4 MPa
	StDev. 12.9 MPa
N (number of samples)	39
Elongation at break, A	
In horizontal direction (XY)	Mean 13.8%
	StDev. 0.6%
N (number of samples)	39
Hardness, HRC	
Hardness	Mean 42.8 HRC
	StDev. 0.3 HRC
N (number of samples)	5

Cytotoxicity

Cytotoxicity tests were done according to ISO 10993-5. It included growth inhibition tests evaluated from two endpoints (XTT & BCA). Tests were done with as-manufactured cubes. EOS StainlessSteel 17-4PH cubes were extracted under agitation for 24±2h with DMEM 10% FBS. L929 cells were then incubated for 68 – 72h with the following concentrations of the test extract: 13.2%, 19.8%, 29.6%, 44.4%, 66.7% and 100%. Surface/volume ratio used was 3cm2/mL.

Cytotoxicity results

In this study under the given conditions no leachable substances were released in cytotoxic concentrations from the test item as confirmed by two different endpoints (XTT, BCA).

EOS IndustryLine:

The new industry standard for additive manufacturing

Our EOS IndustryLine features high quality materials for specific industrial requirements. These materials have been developed with a dedicated EOS ParameterSet and extensively tested like never before, with respect to physical and chemical properties of powder and built parts as well as process stability.

Your benefits:

- → Reliable data with high statistic confidence level
- → Save time and costs as qualification effort by the customer is less, easier and faster
- → More efficient development and manufacturing process
- → Shorter time-to-market

Abbreviations

Min. Minimum Max. Maximum StDev. Standard deviation Wt. Weiaht ΗТ Heat Treatment XTT Tetrazolium salt BCA Bicinchoninic acid DMFM Dulbecco's Modified Eagle Medium FRS Fetal Bovine Serum

The quoted values refer to the use of this material with above specified type of EOS DMLS® system, EOSYSTEM and EOSPRINT software version, parameter set and operation in compliance with parameter sheet and operating instructions. Part properties are measured with specified measurement methods using defined test geometries and procedures. Further details of the test procedures used by EOS are available on request. Any deviation from these standard settings may affect the measured properties.

The data correspond to EOS knowledge and experience at the time of publication and they are subject to change without notice as part of EOS' continuous development and improvement processes.

EOS does not warrant any properties or fitness for a specific purpose, unless explicitly agreed upon. This also applies regarding any rights of protection as well as laws and regulations.

¹ Part properties are provided for information purposes only and EOS makes no representation or warranty, and disclaims any liability, with respect to actual part properties achieved. Part properties are dependent on a variety of influencing factors and therefore, actual part properties achieved by the user may deviate from the information stated herein.

This document does not on its own represent a sufficient basis for any part design, neither does it provide any agreement or guarantee about the specific properties of a material or part or the suitability of a material or a part for a specific application.

This powder has not been developed, tested or certified as a medical device according to Directive 93/42/EEC (MDD) or Regulation (EU) 2017/745 (MDR) and is not intended to be used as a medical device, in particular for the purposes specified in Art. 2 No. 1 MDR. Insofar as you intend to use the powder as raw material for the manufacture of pharmaceutical products or medical devices (e.g. as raw material which as a material must meet the requirements of Annex 1, Chapter II MDR), the responsibility and liability for all analyses, tests, evaluations, procedures, risk assessments, conformity assessments, approval and certification procedures as well as for all other official and regulatory measures required for this purpose shall lie solely with you both with regard to the pharmaceutical product and/or medical device manufactured by you and with regard to the properties, suitability, testing, evaluation, risk assessment, other requirements for use of the powder as raw material. This also applies to applications with food contact. In this respect, the limitations of liability pursuant to our General Terms and Conditions and the system sales or material contracts shall apply.

Status 07/2022

EOS is certified according to ISO 9001. EOS®, DMLS®, EOSPRINT® and EOSTATE® are registered trademarks of EOS GmbH Electro Optical Systems in some countries. For more information visit www.eos.info/trademarks.

Cover: This image shows a possible application. It is not a device cleared by the FDA or any other local authority for distribution in the United States.

Headquarters

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

www.eos.info

in EOS

y EOSGmbH

■ EOSGmbH

#responsiblemanufacturing
#futureisadditive

Further Offices

EOS France Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India Phone +91 443 964 8000

EOS Italy Phone +39 023 340 1659

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK

Phone +44 1926 675 110

Informationsgrundlagen

Die Informationen in diesem Datenblatt basieren auf den offiziellen Datenblätter des Maschinenherstellers und Pulver Produzenten EOS GmbH in Deutschland, sowie unseren Erfahrungen und Erkenntnissen innerhalb der Produktion. Das Pulver wird gemäss EOS Quality Management sowie internationalen Standards produziert und getestet.

Die Informationen im Datenblatt entsprechen dem aktuellen Stand vom April 2023 und werden regelmässig geprüft und aktualisiert. Die Unlimital AG behält sich das Recht vor, das Datenblatt ohne Voranmeldung abzuändern und anzupassen.

Gewährleistung

Die Daten in diesem Datenblatt gelten als Richt/Referenzwert und die Unlimital AG übernimmt keine Garantie oder Gewährleistung für die Eigenschaften oder die Eignung für spezielle Anwendungen. Die Richtwerte dienen als Konstruktions- und Definitionshilfe, ersetzen aber keine Prüfung bei hochbelasteten Bauteilen. Besonders bei technisch sehr anspruchsvollen Bauteilen ist eine Prüfung der Bauteile sehr zu empfehlen. Wir unterstützen dabei gerne mit unserem Fachwissen und bei der Definition der korrekten Prüfprozesse.

Contact us info@Unlimital.ch